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Planetary probes into the dense atmospheres of Venus, Jupiter, and Saturn may
require noncoherent communication links to Earth. In this article, the capacity of
noncoherent, multiple-frequency shift-keyed (MFSK) systems is determined as a
function of the number of frequencies, receiver quantization, and signal-to-noise
ratio. It is shown that the spacing of the quantizer levels is not critical, and that
8-level uniform quantization is essentially as good as infinite quantization.

l. Introduction

Entry probes into the turbulent and dispersive at-
mospheres of Venus, Jupiter, and Saturn may require
noncoherent, multiple-frequency shift-keyed (MFSK)
communication systems as direct or relay links to Earth.
Bar-David and Butman (Ref. 1) have computed the capac-
ity and the convolutional coding rate parameter Reomp
(Ref. 2) for such channels with hard-decision receivers.
Choudhury (Ref. 3) has evaluated the parameters Reomp
and E, (p) (Ref. 4) for noncoherent MFSK systems with
quantized (soft-decision) receivers. In this article, the
channel capacity is determined for soft-decision receivers
as a function of the number of frequencies, the predetec-
tion signal-to-noise ratio, and the number of uniformly
spaced quantization levels, after the spacing of these
levels has been optimized. The results are compared to
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the channel capacity of an unquantized MFSK receiver,
which has been computed for binary and infinite signal
sets.

In order to minimize the cost of providing a given link
capability, it is important to know the capacity of a chan-
nel before design decisions are made. This information is
also relevant to flight/ground tradeoffs involving relay
versus direct links, relay link versus downlink complexity,
and ground versus probe/relay bus complexity.

Il. Infinite Quantization Capacity

Consider a set of M equally likely orthogonal signals
{si; 1 =i=M} transmitted over an additive white Gaus-
sian noise (AWGN) channel. (Once we are restricted to
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orthogonal signals, it is reasonable to use this channel
model.) For each transmission, a noncoherent square-law
receiver generates a vector observable r = (ry, 15, - - * ,Ty)
with continuous, independent components which are the
outputs of the M envelope detectors. Using symmetry, it is
well known (Ref. 4) that the channel capacity Cy (o) is
given by

u(a) = /drp(rlsl) Iog2|: ')1 ]bits/second (1)

where T is the signal duration in seconds, p (r}s,) is the
conditional density of r given that s, is sent, and p (r) is the
density of r. It can be shown (Ref. 5) that the conditional
density of the jth envelope detector output r; has the form

now[ =g+ e bl i
p(ri]si) =
j~i 2)
where
T, ®

is the signal-to-noise ratio in the predetection filter. Con-
sequently, Eq. (1) can be expressed as

Cu (a) 2

G e[ 5] ri
X H 7j exp [— r—é] In [E—IEE(LI:I()LYT)} (4)

=1

where
S .
C, = ( N ) log, e bits /second (5)

is the familiar expression (Ref. 2) for the capacity of the
infinite-bandwidth, coherent AWGN channel.

In general, the multiple integral in Eq. (4) cannot be
evaluated in closed form. However, it has been shown
(Ref. 6) that Cy («)/C. increases monotonically with in-
creasing M to the limiting value

Cu (o) 2 o
C. T 2P| T o
2

X dx x exp I:—— %:I Iy (ex)Inl; (ax) — 1

(6)
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which can be calculated numerically, and is plotted to-
gether with the soft-decision capacity curves as the ulti-
mate performance limit for noncoherent MFSK systems.
Equation (6) also compares the infinite-bandwidth capaci-
ties for coherent and noncoherent signaling over an
AWGN channel as a function of the received signal-to-
noise ratio /2. Also of interest is the binary signaling
case, for which Eq. (4) reduces to a double integral which
can be computed numerically:

Co(a) 2

== N dxx _x I
o~ exp 2|/ exp g | Lo (ax)

dy y exp [— 2‘] In ['L,—(Z%Z;T)(E:'
(7)

Equation (7) is the limiting capacity for binary, non-
coherent MFSK signaling with a soft-decision receiver
(see Figs. 2 and 6).

l1l. Soft-Decision Capacity
A. Binary Single-Observable Case

Consider a special case of binary noncoherent fre-
quency shift-keyed (FSK) signaling in which the sufficient
observable

r=r1}—13 (8)

is formed from the envelope detector outputs r, and r,:
this will hereafter be referred to as the single-observable
(SO) case. A soft-decision receiver forms the discrete ob-
servable g by quantizing the continuous observable r to
one of Q levels. For simplicity, a uniform quantization
scheme with intervals of width A is used, as shown in
Fig. 1. For this quantization rule, the conditional proba-
bility of g satisfies the constraint

P(qls:)=P(Q+1—gq|s) 9)

Consequently, the normalized capacity can be expressed
in the form

CSO (a’ Q)
Co

Q
2 2P (q|s1)
?ZP“”S‘”"[P(qlsl) PO LT AT

(10)



It remains to determine the conditional probability
P(q|s.), which can be written in terms of the conditional
cumulative distribution function

F.(B]s)=P(— w0 <r=g]s):
F,[A(l —% sl]; g=1

) else- 9] e a8

) ))s ] 2=e=o-

-r[a(2-1)

After some mathematical manipulation, it is found that

1 a?
Ee"P['g“Z} p=0

P(q|s)

Sl]; q=0
(11)

F,(8]s) = é_em[g_z]o(—ﬁm)

+1- Qu(as \/—B)v

where Qu (- , ) is the Marcum Q function (Ref. 7), de-
fined by

=0 (12)

Ox(a,b)= ﬁ " dxx exp [— %(x” + az)] Lia) (13)

which can be evaluated numerically.

For the special case where Q = 2, the binary single-
observable system above reduces to the binary, non-
coherent MFSK channel with a hard-decision receiver.
The normalized capacity in Eq. (10) simplifies to the form

Coled) _ 2 ot elne + (-l -0] (19

for a binary symmetric channel with crossover probability
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s?P(1|s1)=-§exp|i— ZZ:I (15)

Of course, for Q = 2, the capacity is independent of the
uniform quantizer spacing A, For Q > 2, the optimum
quantization width A, is determined by maximizing
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Cso (a, Q) /C ., over A, for the given Q and «. The optimum
normalized capacity Cyo (a, Q)/C., evaluated at A = Ay,
is plotted in Fig. 2 as a function of the predetection
signal-to-noise ratio «?/2, for several values of Q. Corres-
ponding curves of A, are presented in Fig. 3. The varia-
tion in the normalized capacity with A is examined in
Fig. 4 for Q = 4, «*/2 =1. Conclusions drawn from these
graphs are discussed later.

B. General M-ary Case

For the general M-ary noncoherent MFSK system, a
soft-decision receiver quantizes each envelope detector
output 7; into a discrete observable g;: this defines a vec-
tor observable q==(q., s, * * -, qu), with statistically
independent components. Again, Q uniformly spaced
quantization levels are used, with separation A, as shown
in Fig. 5. Then the normalized capacity can be expressed
in terms of the conditional probability of q:

: f{(‘”sl) (16)
o E P(q]|s:)

For convenience, define the discrete parameters x () and
y (") according to

=—23P(q|s)In

CM (a, Q) 2 [
C. o <

x(q:); f=i
P(q;|s:) = { (17)
y(q;); i

Using Eq. (2) in conjunction with the quantization rule of
Fig. 5, it can be shown that

Oula,(qi — 1)] — Ou [o,4q:];

x(q:) = 1=¢;=0-1 (18)
Oxlea(Q—-1)]; ¢:=0Q
and
em[*%sz(qj - 1)”_ - eXP[— —;Azq‘f ];
y(q:) = 1=g=0-1

w[-5a@-1] a=0 a9

Then Eq. (16) reduces to

c,,(a,Q):%{

& b= 3 x(q) f@) - Inz() |}

qy=1
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where

4 =(929s " ,qu)
f@=11v(@)n % =(a) (20)
_ x(g5)
H= @

Again, the normalized capacity Cy (a, Q)/C,, should be
maximized over the quantization width A, thus defining
the optimum spacing A, for the given M, Q, and a. Plots
of the optimum normalized capacity and A, are pre-
sented in Figs. 6 through 12.

For larger values of M, there is a computational prob-
lem inherent in Eq. (20). The difficulty lies in the summa-
tion of f (q) over the Q¥-* distinct vectors q’ for each value
of g, : even for Q = 2, this becomes unwieldy for M = 186.
This problem is partially alleviated in the Appendix.

IV. Results

In this article, expressions were given for the capacity
of an M-ary noncoherent MFSK system with a soft-
decision receiver. Results for the binary single-observable
case are summarized in Figs. 2-4. In Fig. 2, the optimum
normalized capacity Cso/Cy, evaluated at the optimum
uniform quantizer spacing Ay, is plotted versus the
predetection signal-to-noise ratio ST/N,, for several levels
of quantization Q. As Q increases, Cgo/C., converges uni-
formly to the limiting expression in Eq. (7). For prac-
tical purposes, it is evident that very little improve-
ment is realized by using more than 8 levels of quantiza-
tion. For a given value of Q, Fig. 3 demonstrates that
Aoyt varies slowly with ST /N, particularly for lower values
of ST/N,. Also, it appears that A, is approximately in-
versely proportional to Q for any given ST/N,. For fixed
values of Q and ST/N,, Cs,/C., has a broad maximum
over A at A,y. For example, for Q =4 and ST/N, =1,
Fig. 4 shows that Cs,/C,, has a maximum value of 0.109
at A = A, = 3.1; however, at A =2 and 4, Cy,/C,, =
0.107 and 0.108, respectively.

Results for the general M-ary case are presented in
Figs. 6-12. Although it is not illustrated graphically, it is
again true that the normalized capacity Cy/C, varies
slowly with A near A,,, for any given M, Q, and ST/N,,
so that the quantizer spacing is not a critical system
parameter. Figures 10 and 11 demonstrate that A,,,

(1) Is approximately constant for small ST/N.,,.
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(2) Grows slowly with increasing ST/N,,.
(3) Is roughly inversely proportional to Q.

(4) Is relatively insensitive to changes in M for a
given Q.

For the binary dual-observable case, Fig. 6 shows that
the optimum normalized capacity Cy/C., again converges
uniformly to the limiting curve of Eq. (7), as in the single-
observable case. A direct comparison of the M = 2 curves
in Figs. 2 and 6 reveals that the two binary receivers
achieve essentially the same capacity for Q =4, and for
Q = 2 when ST/N, = 3. However, for Q = 2 in the range
ST/N, Z 3, the dual-observable system outperforms the
single-observable receiver (recall that for Q = 2, the
single-observable receiver is simply the binary hard-
decision receiver). This performance advantage is not
without cost: the dual-observable receiver must store
2 bits of information for each transmission when Q = 2,
compared to 1 bit in the single-observable case (this addi-
tional storage requirement may not be important at low
rates).

Figures 6-9 demonstrate the rate of convergence of
the optimum C,/C, to limiting expression in Eq. (6)
for infinite M and Q. For fixed Q, this convergence
appears to be uniform in M. It is evident that for larger
values of M, increasing M only produces significant in-
creases in capacity for larger signal-to-noise levels.

Figure 12 demonstrates some interesting receiver trade-
offs. Denote the M-ary soft-decision receiver with Q levels
of quantization by (M, Q). The (M, Q) receiver must store
M log, Q bits of information for each transmission (this
does not apply to the binary single-observable case). An
obvious question is: For a given receiver complexity
M log, Q, which choice of (M, Q) is optimum with regard
to maximizing capacity? The answer, not surprisingly,
depends on the predetection signal-to-noise level ST/N,.
For example, when M log, Q = 8 bits/transmission with
ST/N, 2 1.8, the (4, 4) receiver outperforms the (8, 2)
receiver. And for Mlog,Q = 16bits/transmission, the
(8,4) receiver achieves a higher capacity than the (186, 2)
receiver over the range ST/N, Z 3.9.

Generalizing these results, it appears that for lower
values of ST/N, with a given receiver complexity
Mlog, Q, it is better to use fewer signals and increase the
number of quantization levels. Figure 12 also demon-
strates that the (4, 4) receiver has a slightly higher capacity
than the (16, 2) receiver over the range ST/N, = 0.6, and
yet the storage requirements of the former are only half
those of the latter.
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OPTIMUM NORMALIZED CHANNEL CAPACITY, CSO/COO
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Fig. 1. Quantization rule for binary single-observable case
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Fig. 2. Capacity for binary noncoherent FSK system based on

uniformly quantized single observable
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single-observable case
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OPTIMUM NORMALIZED CHANNEL CAPACITY, CM/Coo
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Fig. 5. Quantization rule for ith envelope detector output
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Fig. 6. Capacity for binary noncoherent FSK system based on
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dual uniformly quantized observables
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MFSK system
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Fig. 8. Capacity for 8-ary noncoherent soft-decision
MFSK system

JPL TECHNICAL REPORT 32-1526, VOL. XV



100
L

3,
@) / \
> M ~ ] TN
z Q*""}\;V/ /‘ \
: >
3 L
— N—Q =4 =
% // \__Q,__Z}M—lé
Z -1 /
< 10 /
o
fa) 74
N
: 7
S 4
pia
s
2
=
5 2
5}

1072

107! 2 4 6 100 2 4 6 10

SIGNAL-TO-NOISE RATIO, S1/N0

Fig. 9. Capacity for 16-ary noncoherent soft-decision
MFSK system
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Fig. 10. Optimum quantizer spacing for binary
dual-observable case.
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Appendix
Reduction of Capacity Computation Time

The normalized capacity expression in Eq. (20) con-
tains the factor

2 f(q)

Py

which requires the summation of Q¥-* terms for each q,;
the computation time therefore grows exponentially with
M, for a given Q. For example, it required 100 minutes of
computer time to determine Cy/C., for the (8, 4) receiver
at selected values of A and «, using Eq. (20). With the
reduction technique described below, the same results
were obtained with a computer execution time of only
2 minutes.

For a given ¢,, many distinct vectors ' may yield the
same argument f(q) in the summation above. Suppose q’
contains £, components that are 1, {, thatare 2, - - - , and
{, that are Q. Then ¢’ can be (irreversibly) mapped into
the vector £ = (I,,0,, - - - , 1), with components in the
range 0= {; =M — 1, subject to the constraint

Ql:M—l

Q
=1

3

The significance of this mapping is that every q" which
maps into the same equivalence class £ produces the same
term f(q) = g (q., ), for a given g, where

Q Q
g0 )= 1yl @) + 3 06) | ()

from Eq. (20). It can be seen that there are

ng) =M1t (A-2)
1 (.

i=1

distinct vectors q” which map into a particular equivalence
class £. Therefore, the summation of interest can be writ-
ten in the form

2fl@= % n(0) g(q:,0) (A-3)
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The advantage is that the original summation contained
Q¥ terms, while the new one has only

Q+M-—-2
M-1
terms.* The computational reduction factor is of the
order of
Q+M-2
M-1
Y=g (A-4)

For example, this reduction factor is tabulated below for
several values of M and Q:

Q Y
8 0.25
4
8

0.0075
0.0016

®w w | =

The vectors £ can be generated recursively using a sub-
routine suggested by H. Rumsey. Start with the initial
vector £ = (M —1,0,0, - - - ,0) and recursion parameter
p = 1. Each successive £ is then generated by the com-
puter subroutine GEN (£, p), described by the flow chart
in Fig. A-1, culminating in the final vector

2:(050". ’ 707M_1)

Summarizing our results, the normalized capacity should
be computed from the expression

% -2 {lnM ~ 3 x(q) b n(0) g(qul) — 1‘“("1)]}

4y =1

(A-5)

in terms of previously defined parameters.

*Proved by M. Klass, Caltech Postdoctoral Fellow in Mathematics.
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CALL
GEN (£, p)

RETURN

Fig. A-1. Flow chart for computer subroutine GEN (£,p)
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